

DPP – 1 (Magnetism & Matter)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/74

Video Solution on YouTube:-

https://youtu.be/DLSw1mutOl8

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/56

Q 1. A magnetic wire of dipole moment $4\pi Am^2$ is bent in the form of semicircle. The new magnetic moment is: (a) $4\pi Am^2$ (b) $8\pi Am^2$

(a) $4\pi Am^2$	(b) 8π Am
(c) $4 Am^2$	(d) $8 Am^2$

- Q 2. A magnet of magnetic moment M and pole strength m is divided in two equal parts, then magnetic moment of each part will be
 (a) M
 (b) M/2
 (c) M/4
 (d) 2M
- Q 3. Magnetic induction due to a short bar magnet on its axial line (at a distance 'r') is inversely proportional to

(b)

 $(d) \frac{1}{r^2}$

- (a) *r*³
- (c) r^2
- Q 4. Points A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and 2x cm respectively. From the pole nearer to the points, the ratio of the magnetic field at A and B will be

(a) 4 : 1 exactly	$n(\subseteq)$	(b) 4 : 1 approx.
(c) 8 : 1 exactly	12	(d) 8 : 1 approx.

- Q 5. A very long bar magnet (length L) has a pole strength of 10A-m. Find the magnetic field at a point on the axis of the magnet at a distance of 5cm from the north pole of the magnet (L >>> 5cm) (a) 4×10^{-4} T (b) 8×10^{-4} T
 - (a) 4×10^{-6} T (b) 8×10^{-8} T (c) 4×10^{-6} T (d) 8×10^{-8} T
- Q 6. Calculate the magnetic field due to a bar magnet 2cm long and having pole strength of 100 A-m at a point 10 cm from each pole on the equatorial line (a) 2×10^{-2} T (b) 3×10^{-3} T

$(u) \perp \times 10$ 1	(0) 5×10 1
(c) 2×10^{-4} T	(d) 5×10^{-6} T

Q 7. A bar magnet is 0.10 m long and its pole strength is 120 Am. Find magnitude of magnetic field at a point on its axis at a distance 20 cm from its center
(a) 6.8 × 10⁻⁵ T
(b) 3.4 × 10⁻⁴ T
(c) 2.1 × 10⁻⁴ T
(d) 5.2 × 10⁻⁶ T

Q 8. The magnetic potential at a point on the axial line of a bar magnet of dipole moment M is V. What is the magnetic potential due to a bar magnet of dipole moment $\frac{M}{4}$ at the same distant axial point?

(a) 4V	(b) 2V
(c) V/2	(d) V/4

- Q 9. The pole strength of a bar magnet is 48 ampere-meter and the distance between its poles is 25 cm. The moment of the couple by which it can be placed at an angle of 30° with the uniform magnetic intensity of flux density 0.15 Newton/ampere-meter will be
 - (a) 12 Newton × metre (c) 0.9 Newton \times metre

(b) 18 Newton \times metre (d) None of the above

- Q 10. The work done in rotating a magnet of magnetic moment 2 Am^2 in a magnetic field 5×10^{-3} T from the direction along the magnetic field to opposite direction to the magnetic field, is (a) zero (b) 2×10^{-2} J
 - (c) 10^{-2} J

(d) 10 J

(d) 2MB

- Q 11. Magnetic moment of bar magnet is M. The magnitude of work done to turn the magnet by 90⁰ of magnet in direction of magnetic field B will be (b) $\frac{MB}{2}$
 - (a) zero
 - (c) *MB*

(c) $4 \times 10^{-7}T$

- Q 12. Find the magnetic field due to a dipole of magnetic moment 1.2 Am^2 at a point 1m away from it in a direction making an angle of 60° with the dipole-(b) $3.2 \times 10^{-6}T$ (d) $1.6 \times 10^{-7}T$ (a) $2 \times 10^{-6}T$
- Q 13. The magnitude of magnetic field, due to a dipole of magnetic moment 2.4 Am^2 , at a point 200 cm away from it in the direction making an angle of 90° with the dipole axis is

(a) 3×10^{-6} T	(b) 3×10^{-7} T			
(c) 3×10^{-8} T	(d) 0.3×10^{-8} T			

Q 14. Two small bar magnets are placed in a line with like poles facing each other at a certain distance d (d >> length of magnets) apart. If the length of each magnet is negligible as compared to d, the force between them will be inversely proportional to (a) 1 $(h) d^2$

(a) a	(b) <i>a</i> -
(c) d^4	(d) $\frac{1}{d^2}$

- Q 15. A long magnet is cut in two parts in such a way that the ratio of their lengths is 2:1. The ratio of pole strengths of both the section is
 - (a) In the ratio of 1 : 1 (b) In the ratio of 2:1
 - (c) In the ratio of 1:2(d) In the ratio of 4:1

- Q 16. A magnet of magnetic moment 50 $\hat{i} Am^2$ is placed along the x-axis in a magnetic field $\vec{B} = (0.5 \hat{i} + 3.0 \hat{j})$ T. The torque acting on the magnet is (a) 175 \hat{k} N-m (b) 150 \hat{k} N-m
 - (c) 75 \hat{k} N-m

(d) 150 k N-m

Q.1	d	Q.2 b	Q.3 a	a (Q.4	d	Q.5	a
Q.6	c	Q.7 b	Q.8 d	1 (Q.9	c	Q.10	b
Q.11	C	Q.12 d	Q.13	c (Q.14	c	Q.15	a
Q.16	b							

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

PHYSICS

ICONIC ** PLUS ⊘ India's Best Educators ⊘ Interactive Live Classes Structured Courses & PDFs C Live Tests & Quizzes Personal Coach × Study Planner 24 months ₹2,100/mo > +10% OFF ₹50.400 No cost EMI 18 months ₹2,363/mo > No cost EMI +10% OFF ₹42,525 ₹2,888/mo 12 months > +10% OFF ₹34,650 No cost EMI 6 months ₹4,200/mo > +10% OFF ₹25,200 No cost EMI To be paid as a one-time payment View all plans Awesome! PHYSICSLIVE code applied X

Written Solution

DPP-1 Magnetism- Bar Magnets & its Magnetic field, Magnet in Magnetic field By Physicsaholics Team

Solution: 9 Z = MBGino $M = md = 48 \times 25 \times 10^{2}$ $M = 12 Am^2$ given; B= 0,15 N/A-m 0 = 30° 5 × SINJO Z= MBSINO. 67 n 30 ~ Are. 2= 0.21

Solution: 10 $\omega = \Delta U$ $\omega = MB \cos^{\circ} - MB \cos 180^{\circ}$ $\omega = MB - MB (-12) + M$ $W = 2 \times 2 \times$

Solution: 14 " Force between two magnets (when; d>>) N 6M1. M Mo >

Pole strength doesn't depend upon the length.

 $\vec{z} = \vec{M} \times \vec{B} = (50\hat{J}) \times (0.5\hat{J} + 3.0\hat{J})$ = $0 + (50\times3)\hat{f}$ 2 = 150 k N-m Ans

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/74

Video Solution on YouTube:-

https://youtu.be/DLSw1mutOl8

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/56

CLICK

